Comparison between direct current and sinusoidal current stressing of gate oxides and oxide/silicon interfaces in metal–oxide–silicon field-effect transistors

نویسندگان

  • L. Trabzon
  • O. O. Awadelkarim
  • J. Werking
  • G. Bersuker
  • Y. D. Chan
چکیده

Articles you may be interested in Observation of gate bias dependent interface coupling in thin silicon-on-insulator metal-oxide-semiconductor field-effect transistors Mobility comparison between front and back channels in ultrathin silicon-on-insulator metal-oxide-semiconductor field-effect transistors by the front-gate split capacitance-voltage method Appl. Trap evaluations of metal/oxide/silicon field-effect transistors with high-k gate dielectric using charge pumping method Appl. Study of charge control and gate tunneling in a ferroelectric-oxide-silicon field effect transistor: Comparison with a conventional metal-oxide-silicon structure Electrical-stress simulation of plasma-damage to submicron metal–oxide–silicon field-effect transistors: Comparison between direct current and alternating current stresses It was recently reported that plasma process-induced damage to metal–oxide–silicon field-effect transistors ͑MOSFETs͒ comprises a damage mechanism that involves alternating-current ͑ac͒ stressing of the oxide and the oxide/silicon interface. The study reported herein is aimed at establishing signatures of MOSFET damage induced by ac stressing applied at conditions that emulate plasma processing environment. We apply sinusoidal ac voltage stress signals to 0.5 ␮m n-channel or p-channel MOSFETs with 90-Å-thick gate oxides. We assess damage on MOSFETs by measuring transconductance, threshold voltage, and subthreshold swing. We find that the onset of damage to devices subjected to ac stressing occurs at voltage amplitudes as low as 4 V, whereas in dc stressing, applied for the same time, damage becomes significant only at dc voltages larger than 10 V. We also show that damage from ac stressing attains a maximum at frequencies in the range 1–100 kHz and decreases at frequencies above 5 MHz. It is proposed that carrier hopping is primarily responsible for oxide current and, hence, device damage observed following the ac stress. This hopping current is insignificant during high-field dc stress when Fowler–Nordheim tunneling becomes the dominant conduction mechanism.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A compact quantum correction model for symmetric double gate metal-oxide- semiconductor field-effect transistor

Articles you may be interested in Possible unified model for the Hooge parameter in inversion-layer-channel metal-oxide-semiconductor field-effect transistors J. Threshold voltage modeling under size quantization for ultra-thin silicon double-gate metal-oxide-semiconductor field-effect transistor GaN metal-oxide-semiconductor field-effect transistor inversion channel mobility modeling Modeling ...

متن کامل

Improvement of a Nano-scale Silicon on Insulator Field Effect Transistor Performance using Electrode, Doping and Buried Oxide Engineering

In this work, a novel Silicon on Insulator (SOI) MOSFET is proposed and investigated. The drain and source electrode structures are optimized to enhance ON-current while global device temperature and hot carrier injection are decreased. In addition, to create an effective heat passage from channel to outside of the device, a silicon region has embedded in the buried oxide. In order to reduce th...

متن کامل

Design and Implementation of MOSFET Circuits and CNTFET, Ternary Multiplier in the Field of Galois

Due to the high density and the low consumption power in the digital integrated circuits, mostly technology of CMOS is used. During the past times, the Metal oxide silicon field effect transistors (MOSFET) had been used for the design and implementation of the digital integrated circuits because they are compact and also they have the less consumption power and delay to the other transistors. B...

متن کامل

Design and Implementation of MOSFET Circuits and CNTFET, Ternary Multiplier in the Field of Galois

Due to the high density and the low consumption power in the digital integrated circuits, mostly technology of CMOS is used. During the past times, the Metal oxide silicon field effect transistors (MOSFET) had been used for the design and implementation of the digital integrated circuits because they are compact and also they have the less consumption power and delay to the other transistors. B...

متن کامل

Nano Dispersed Metal-Ceramic Composite Materials of the Ni-SiO2 system

In the organic field effect transistors (OFETs) generation, the silicon gate oxide is 1-2 nm thick. A shrinking of this thickness down to less than 1 nm for the next generation will led to a couple of orders of magnitude increase in tunnelling as well as leakage currents. NiO-SiO2 can be used in a variety of devices, such as in circuit boards and detectors, including sensors, due to its porous ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014